Good ole’ string slicing. That’s one thing that never changes in Data Engineering, working with strings. You would think we would all get to row up some day and do the complicated stuff, but apparently you can’t outrun your past. I blame this mostly on the data and old schools companies. Plain text and flat files are still incredibly popular and common for storing and exporting data between systems. Hence string work comes upon us all like some terrible overload. The one you should fear the most is fixed width delimited files. I ran into a problem recently where PySpark was surprisingly terrible at processing fixed with delimited files and “string slicing.” It got me wondering … is it me or you?
Read moreOne of the reoccurring complaints you always see being parroted by the smarter-then-anyone-else-on-the-internet Reddit lurkers is the slowness of Python. I mean I understand the complaint …. but I don’t understand the complaint. Python is what is is, and usually is the best at what it is, hence its ubiquitous nature. I’ve been dabbling with Scala for awhile, much to my chagrin, and have been wondering about its approach to concurrency for awhile now. I’ve used MultiProcessing and MultiThreading in Python to super charge a lot of tasks over the years, I want to see how easy or complex this would be in Scala, although I don’t think easy and Scala belong in the same sentence.
Read moreThe two coolest kids in class … I mean seriously … every other post in Data Engineering world these days is about Apache Airflow or DataBricks. It’s hard to kick against the goad. Just jump on the band wagon before you get left in the dust. I’ve used both DataBricks and Apache Airflow, they both are pretty important and integral tools for data engineers these days. Apache Airflow makes overall complex pipeline dependencies, orchestration, and management intuitive and easy. DataBricks has delivered with AWS and EMR could not, easy to use Spark and DeltaLake functionality without the management and config nightmares of running Spark yourself.
Recently I worked on an Airflow and DataBricks/DeltaLake integration, time to talk what it looks like and options when doing this type integration.
Read moreWhen I used to think of lambda functions on AWS my eyes would glaze over, I would roll my eyes and say, “I work with big data, what in the world can a silly little AWS lambda function offer me?” I’ve had to eat my own words, those little suckers come in handy in my day to day engineering work. I want to talk about how every data engineer working with AWS can take advantage of lambda’s and add them to their data pipeline tool belt.
Read moreDagster, the first few times I read the name, I just couldn’t take the tech stack seriously …. it’s still kinda hard. Today I want to compare Airflow vs Dagster, mostly explore what Dagster is and does. But I want to compare it to the popular Apache Airflow project so people have some context for it. It’s kinda hard keeping up on all the new stuff these days, I usually just wait till I see enough articles and tweet floating around about it, then I know it’s maybe worth a peak. Let’s crack open Dagster, and see if it’s better then the name chosen for it.
Read moreNot going to lie. I’ve been trying to figure out for awhile where Apache Flink fits in the Data Engineering world for awhile now. A year or two ago I didn’t seem much content posted about it, but it seems to be picking up stream. I’ve mostly managed to avoid understanding what Flink is or does, but I figured it’s time to give my brain a much needed workout. When I was ignoring Flink, I just chalked it up as another messaging/streaming system like Kafka or Pulsar. Apparently I was wrong … no surprise there.
Read moreThere are few things in life that are worse then cracking open some serious PySpark pipeline code, and then realizing there isn’t a single function written to encapsulate logic … wondering if some change you are about to make will bring down the whole pipeline. When you are new to a codebase you don’t know what you don’t know, you don’t have any backstory and you are usually flying by the seat of your pants in the beginning. When you have no unit tests, usually the only other way to test changes on a Spark pipeline are to run it …. which is sometimes easier said then done in a development environment. The first line of defence should be unit testing the entire PySpark pipeline.
Read MoreIf you’re anything like me when someone says Delta Lake you think DataBricks. But, the mythical Delta Lake is an open source project, available to anyone running Apache Spark. It seems also too good to be true, ACID transactions on the Spark scale? Incredible. This is the future, it has to be. The lines of what is a data warehouse have been starting to blur for a long time, I have a feeling Delta Lake will be the death blow to the traditional DW … or its rebirth??
Read moreIn part 1 of the big data file formats we reviewed Parquet vs Avro. It was apparent from the start that the two file formats were built for different things. Avro is clearly a complex row structured file format used in communication and transactions, where schema is king and nested structures are no problem. Parquet on the other hand has risen to the top with the popularity of Spark, is columnar based storage and is well suited to structured and tabular type data. But, lest the annals of inter-webs call us uncouth and forgetful, we must add ORC file format to the list.
Read moreDon’t you like stuff for free? Don’t you like it when stuff I just handed to you? I mean when is that last time you didn’t want to get a free t-shirt. How about 20 bucks in the mail from you Grandma? That’s kinda what Pipelines
are in Spark ML. The Apache Spark ML library is probably one of the easiest ways to get started into Machine Learning. Leaving all the fancy stuff to the Data Scientist is fine, Data Engineers are more interested in the end-to-end. The Pipeline
, and the Spark ML API’s provide a straight froward path to building ML Pipelines
that lower the bar for entry into ML. So, set right up, come get your free ML Pipeline
.
Interesting links
Here are some interesting links for you! Enjoy your stay :)Pages
Categories
Archive
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- May 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018