There comes a point in the life of every data person that we have to graduate from csv files. At a certain point the data becomes big enough or we hear talk on the street about other file formats. Apache Parquet and Apache Avro are two of those formats that been coming up more with the rise of distributed data processing engines like Spark.
Read moreml pipelines
Building Machine Learning (ML) pipelines with big data is hard enough, and it doesn’t take much of a curve ball to make it a nightmare. Most of what you will read online are tutorials on how to take a few CSV files and run them through some sklearn package. If you are lucky, you might find some “big data” ML stories on Medium where someone uses Spark to crunch a bunch of JSON, Parquet, or CSV files at scale of 10 to a few hundred gigabytes of data. Usually they are simplistic and ambiguous. Unfortunately that isn’t how it works in the real world.
Read moreOn again, off again. I feel like that is the best way to describe Apache Airflow. It started out around 2014 at Airbnb and has been steadily gaining traction and usage ever since, albeit slowly. I still believe that Airflow is very underutilized in the data engineering community as a whole, most everyone has heard of it, but it’s usage seems to be sporadic at best. I’m going to talk about what makes Apache Airflow the perfect tool for any Data Engineer, and show you how you can use it to great effect while not committing to it completely.
Read moreWhat’s Elasticsearch precious? I feel like Gollum when confronted by taters. Elasticsearch has been around for awhile now, based on Lucene, it’s become a well known name in the field of text and semi structured data storage, analysis and retrieve category. Even though it’s popular enough to get name recognition I’ve rarely run across it in the wild. We are going to dip our toes into Elasticsearch by working on a small project to store and search a book(s). It just give us enough simple problems to solve that by the end we should have at least a basic understanding of how to connect, store, and retrieve simple documents with Elasticsearch.
Read moreAh. What a classic. The one piece of code that I end up writing over and over again, you would think I would have stashed it away by now. Not going to lie I usually have to Google it, while thinking, is this the right way? Should I just open the csv file and iterate it? Should I import the csv module? Should I just use Pandas? Does it matter? Probably not.
Read moreIt’s a fight to the death people… that’s why it’s called Thunderdome. This will be no different. Last time we talked about the very basics of the strange world of geo-spatial tools for data engineering. The next most obvious thing do of course is to see what tool is the best. By best I mean what tools can be used to load and do simple manipulation of data in a fast and relatively simple manner.
Read moreWhat does a data engineer need to know about working with geospatial data? I’m going to give my two cents on what is and is not important. First, prepare to be annoyed as you will most likely spend hours debugging strange and not obvious errors and bugs. You should run screaming the other way, but in case that is not a option, here are the basics.
Read moreWhat I’ve greatly feared has come to pass. I’ve come to love on of the most confusing parts of Python. AysncIO. It has this incredible ability for data engineers building pipelines in Python to take out so much wasted IO time. It saves money. It’s faster. People think you’re smarter than you are. Tutorials are one thing but implementing it in your complex code is typically mind bending and a test of your patience and self-worth.
Read moreRaise your hand if you’ve every used Dask? ……. Me either. With tools like Spark, I’ve only recently started seeing some articles and podcasts pop up around Dask. Written in Python and claiming to be a distributed data processing framework I figured it was about time to check it out. Suprisingly when reading up on the Dask website, it appears they don’t necessarily claim to be out to replace things like Spark. Time to kick the tires.
Read moreThere is nothing more annoying than sitting around waiting for files to download. That was true while I was in high school staring at LimeWire, it’s still true today. Especially when you’re a data engineer who’s supposed to make data pipelines fast. You’re in luck! Yes, it is possible to download a large file from Google Cloud Storage (GCS) concurrently in Python. It took a little digging in Google’s terrible documentation for their Python cloud storage wrapper (hear my snarky-ness), but I found a diamond in the rough.
Read moreInteresting links
Here are some interesting links for you! Enjoy your stay :)Pages
Categories
Archive
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- May 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018