Do this, not that. Well, I’ve got my own list. With everyone jumping on the PySpark / Databricks / EMR / Glue / Whatever bandwagon I thought it was long overdue for a post on what to do, and not to do when working with Spark / PySpark. I take the pragmatic approach to working with Spark, it’s honestly very forgiving well and far into the 10s of TBs of data. Once you wander past that point things tend to get a little spicy if you don’t have it all dialed in. As with most things in life if you get a few things right, and of course don’t do some things, that will get you a long way, the same applies to Spark.
Read moreSo, you’ve heard about dbt
have you. I honestly can’t decide if it’s here to stay or not, probably is, enough folks are using it, and preaching about it. I personally have always been a little skeptical of dbt
, not because it can’t do what it says it can do, it can, but because I’m old and bitter from my many years of Data Engineering, and I always see the problems in things.
But, I will let you judge that for yourself. Today I want to give a brief overview of dbt
, kick the tires, muse about its features, and most importantly, look at dbt
from a Data Engineering perspective, ferret out the good, the bad, and the ugly. I will try my best to be nice but don’t count on it. Code is on GitHub.
Ever since playing with Great Expectations with Spark some time ago, I’ve been on the lookout for more Data Quality at-scale tools. The market still has a long way to go with these tools, not enough options, hard to use, and the typical Data Engineering travails. I came across soda-core recently, a self-proclaimed…
“Data reliability testing for SQL- and Spark- accesssible data.“
soda-core docs
Doing anything at scale, well … that’s usually the problem. Data Quality and Observability are topics were hear a lot about these days. The reality often doesn’t meet the expectations most of the time. Even Great Expectations, being awesome, can get complicated real quick-like. Let’s hope that soda-core pair with Spark can show us some real promise. Code available on GitHub.
Read moreI think it’s funny that DataFrames are so popular these days, I mean for good reason. They are a wonderful and intuitive way to work with and on datasets. Pandas … the nemesis of all Data Engineers and the lover of Data Scientists. Apache Spark is really the beast that brought DataFrames to the masses. Even those little buggers over at Apache Beam give you DataFrames.
Of course, when anything gets popular, you start getting little things that start to pick and peck at the heels. I would probably say that is what DataFusion with Rust seems to be. Seems more like a contender against Pandas rather than Spark to me. I guess if you’re just using Spark locally or on a single node, sure you could consider using DataFusion. Code available on GitHub.
Read moreHow many times in your life, that is but a mist, have you thought, “If I had only known that in the beginning?” I feel as if I’ve committed that cardinal sin as a developer and Data Engineer … falling in love with a tool to the exclusion of all else. I mean truly, Databricks has brought Big Data to the masses, all you need is your laptop and 10 minutes of PySpark
training before your spending gobs of money, processing massive amounts of data. Where else, and with what else can you do such things? Try it with EMR, good luck to you.
That being said, when you love something you start to notice the slight imperfections and problems with that something. You get kinda nit-picky. Such is life. I want to save some poor soul out there some heartache, that moment when you’ve been writing code for hours or days, and come upon a little surprise that makes your heart drop into your shoes, and the blood runs to your face. Here are 10 things I wish I knew about Databricks before I started. Maybe it will save you time, help you, who knows.
Read moreI think Delta Lake is here to stay. With the recent news that Databricks is open-sourcing the full feature-set of Delta Lake, instead of keeping the best stuff for themselves, it probably has the most potential to be the number one go-to for the future of Data Lakes, especially within those organizations that are heavy Spark users.
One of the best parts about Delta Lake is that it’s easy to use, yet it has a rich feature set, making it a powerful option for Big Data storage and modeling. One of those features that promise a lot of performance benefits is something called ZORDER
. Today I want to explore more in-depth what ZORDER
is, when to use it, when not to use it, and most importantly test its performance during a number of common Spark operations.
It still seems like the wild west of Data Quality these days. Tools like Apache Deque are just too much for most folks, and Data Quality is still new enough to the scene as a serious thought topic that most tools haven’t matured that much, and companies dropping money on some tool is still a little suspect. I’ve probably heard more about Great Expectations as a DQ tool than most.
With the popularity of PySpark as a Big Data tool, and Great Expectations coming into its own, I’ve been meaning to dive into what it would actually look like to to use Great Expectations at scale and answer some simple questions. How easy is it to get up and running with Spark, what’s the path of least resistance to getting some basic Data Quality checks in place in a data pipeline.
Read moreAs the years drag by in Data Engineering, there are a few things that I have come to appreciate more and more. One of those topics that is close to number one on the list is complexity reduction. Today’s modern data stacks are filled to the brim with technologies and tools, full to the brim, and overflowing. So many tools with such wonderful features, sometimes all the magic comes with a downside. Complexity. Complexity can turn something wonderful into a nightmare.
Reducing (not avoiding) complexity seems to be one of the main tenets I work on these days when designing resilient, reliable, and repeatable data pipelines that can process terabytes of data. One of those tools is COPY INTO
feature of Databricks + Delta Lake.
Mmmm … Data Quality … it is a thing these days. I look forlornly back to the ancient days of SQL Server when nobody cared about such things. Alas, we live in a different world, where hundreds of terabytes of data are the norm, and Data Quality becomes a thing. I’ve been meaning to give Great Expectations a poke for like a year, but just haven’t had the time or inclination to do so, but times are changing, and so should I.
I’m not really planning on giving an in-depth guide to Data Quality with Great Expectations, what I’m more interested in are topics like, how easy is it to set up and use, what’s the overhead, what are the main features and concepts and are they easy to understand. I find this sort of review of Data Engineering tools to be more helpful than simply a regurgitation of the documentation.
Read moreAs the road winds on we come to Part 4, of our 5 Part Series on Data Warehouses, Lakes, and Lake Houses. Finally, we are getting to some fun topics after all the boring stuff. Today I want to talk about the two keys to success in your Data Lakes … Idempotency and Partitioning. I firmly believe these two concepts are the cornerstones of the new exciting, or not-so-exciting world of Data Lakes and Lake Houses, without which your data and pipelines go the way of the dodo.
Read moreInteresting links
Here are some interesting links for you! Enjoy your stay :)Pages
Categories
Archive
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- May 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018