Polars is the hot new Rust based Python Dataframe tool that is taking over the world and destryoing Pandas even as we speak. You want the quick and dirty introduction to Polars? Look no farther.
I still remember the good ole days when Apache Spark was fresh and hot, hardly anyone was using it, except a few poor AWS Glue and EMR users … Lord have mercy on their ragged souls. It’s funny how that GOAT of a tool went from being used by a few companies for extremely large datasets … to today’s world, with Databricks, where Pandas-sized data is crunched with Spark.
Recently, for some unknown reason, I was pursuing the new Stackoverflow … called Reddit, for Data Engineering … and I ran across an interesting question … more or less it was related to “what makes a good Software Engineer … in a Data Engineering context.”
One thing I find myself doing these days (I am unsure how I feel about this), is teaching others to solve problems … Data Engineering problems to be specific. It’s not a hard stretch for most to imagine that what a person does at Senior+ software-type levels is just write good code all day.
I assure you, this is not the case typically.
I’ve had something rattling around in the old noggin for a while; it’s just another strange idea that I can’t quite shake out. We all keep hearing about Arrow this and Arrow that … seems every new tool built today for Data Engineering seems to be at least partly based on Arrow’s in-memory format.
So, today we are going to do an experiment.
What if instead of writing a Data Pipeline in Polars, or another tool … that uses Arrow under the hood … what if we actually write a data pipeline with Arrow?
When I was young and full of myself, writing Perl and PHP, while your ma was still reading you a bedtime story and giving you a stuffy to fall asleep with, I had to program uphill, both ways, in the rain and snow. Not like you milk toast Data Engineers clickty clicking around Databricks and Snowflake UIs.
You want a server? Spin up your own Apache. Need a database? MySQL was the only game in town. Need a backend language? Perl was the cat’s meow.
After 10 years of Data Engineering work, I think it’s time to hang up the proverbial hat and ride off into the sunset, never to be seen again. I wish. Everything has changed in 10 years, yet nothing has changed in 10 years, how is that even possible?
Sometimes I wonder if I’ve learned anything at all, maybe I’m just like the moras of Data Warehouses moldering out there in forgotten and beaten SQL Servers. The technology has shifted drastically under my feet, yet I’ve managed to keep my fingernails firmly sunk into the edge of the cliff of technical and personal obsolesce that seems intent on dragging me away to the purgatory of useless programmers and tools.
One of the things I love about Python is its flexibility and huge community, a community that puts out a never-ending stream of useful packages for the average Software Engineer. In a show of solidarity to the open-source community, I thought I would publish a PYPI package that will probably be used by 5 people around the world.
Interesting links
Here are some interesting links for you! Enjoy your stay :)Pages
Categories
Archive
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- May 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018