When I used to think of lambda functions on AWS my eyes would glaze over, I would roll my eyes and say, “I work with big data, what in the world can a silly little AWS lambda function offer me?” I’ve had to eat my own words, those little suckers come in handy in my day to day engineering work. I want to talk about how every data engineer working with AWS can take advantage of lambda’s and add them to their data pipeline tool belt.
Read moreThis is a topic I’ve been musing about lately. The idempotent data load has been a source of much pain and suffering in the lives of many a data engineer and data warehouse developers. Apparently somethings don’t change with the passage of time. My first job in tech was working on a data warehouse team with a classic Kimball style model on SQL Server, back then worrying how to make data loads and ETL idempotent was the task of the hour. All these years later working on data lakes in DataBricks with Spark … guess what …. still worrying about idempotent ETL and data loads.
Read moreTime to open a can of worms. I’ve recently been working with DataBricks, specifically DeltaLake (which I wrote about here). DeltaLake is an amazing tool that when paired with Apache Spark, is like the juggernaut of Big Data. The old is new, the new is old. The rise of DataBricks and DeltaLake is proof of the age old need for classic Data Warehousing/Data Lakes is as strong as ever. While this Spark+DeltaLakes tech stack is amazing, it’s not your Grandma’s data warehouse, it’s fundamentally different under the hood. One of the topics I’ve been thinking about lately has been data modeling in DeltaLake (on DataBricks or not).
Read moreDagster, the first few times I read the name, I just couldn’t take the tech stack seriously …. it’s still kinda hard. Today I want to compare Airflow vs Dagster, mostly explore what Dagster is and does. But I want to compare it to the popular Apache Airflow project so people have some context for it. It’s kinda hard keeping up on all the new stuff these days, I usually just wait till I see enough articles and tweet floating around about it, then I know it’s maybe worth a peak. Let’s crack open Dagster, and see if it’s better then the name chosen for it.
Read moreI always envied Ben Gunn in Treasure Island a little bit. Alone all those years, digging up gold and treasure, hunting wild goat, and living in a nice little cave. Living off the land, king of his island, gone half mad, but somewhat still there. Happy to see other people, but always a little bit of a recluse … too many years alone. I think there is a lesson for us here, and it has to do with the solo Data Engineer. That lone ranger, out there in the data wilderness, surviving.
Read moreNot going to lie. I’ve been trying to figure out for awhile where Apache Flink fits in the Data Engineering world for awhile now. A year or two ago I didn’t seem much content posted about it, but it seems to be picking up stream. I’ve mostly managed to avoid understanding what Flink is or does, but I figured it’s time to give my brain a much needed workout. When I was ignoring Flink, I just chalked it up as another messaging/streaming system like Kafka or Pulsar. Apparently I was wrong … no surprise there.
Read moreEvery good story starts with a few different characters right? It’s like the spice of life, little bit of this, little bit of that. It’s the way of the world. In all my data wandering I’ve come across lot’s of different types of data engineers. I can usually put them into three different categories, somewhat similar but in many ways quite different.
Read moreI am always amused by the apparent contradictory nature of working in the world of data. There is always bits and pieces that come and go, the popular, the out of style … new technology driving new approaches and practices. One of the hot topics the last decade has produced is DevOps, a now staple of most every tech department. Like pretty much every other newish Software Engineering methodology, data world has struggled to adopt and keep pace with DevOps best practices. Once these is always a thorn in my side, making my life more difficult. The simplicity with which it can be adopted is amazing, and the unwillingness and lack of adoption is strange.
Read moreThere are few things in life that are worse then cracking open some serious PySpark pipeline code, and then realizing there isn’t a single function written to encapsulate logic … wondering if some change you are about to make will bring down the whole pipeline. When you are new to a codebase you don’t know what you don’t know, you don’t have any backstory and you are usually flying by the seat of your pants in the beginning. When you have no unit tests, usually the only other way to test changes on a Spark pipeline are to run it …. which is sometimes easier said then done in a development environment. The first line of defence should be unit testing the entire PySpark pipeline.
Read MoreIt seems like today the problems and challenges of Data Engineering are being solved at a lightning pace. New technologies are coming out all the time that seem to make life a little easier (or harder) while solving age old problems. I feel like Machine Learning Ops (MLOps) is not one of those things. It’s still a hard nut to crack. There have been a smattering of new tools like MLFlow and SeldonCore, as well as the Google Cloud AI Platform and things like AWS Sage Maker, but apparently there is still something missing. Nothing has really gained widespread adoption … and I have some theories why.
Read moreInteresting links
Here are some interesting links for you! Enjoy your stay :)Pages
Categories
Archive
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- May 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018