There once was a day when no one used DataFrames that much. Back before Spark had really gone mainstream, Data Scientists were still plinking around with Pandas a lot. My My, what would your mother say? How things have changed. Now everyone wants a piece of the DataFrame pie. I mean it tastes so good, doesn’t it?

Would anyone like a nice big slice of groupBy, maybe agg is what you need? No? Can you say distributed data set? Whatever it is you’re looking for, I’m quite sure a nice old DataFrame can give it to you. With so many options to choose from … what do you choose? I don’t know, whatever works best for you. But, it does set the stage nicely for a clash of the titans per see.

Let’s do this just that. Straight out of the box performance test. Bunch of CSV’s, a little aggregation, just some simple stuff. Mirror mirror on the wall, who is the fastest with DataFrames of them all?

Read more
Photo by Ray Hennessy on Unsplash

I’ve often wondered what purgatory would be like, doing penance for millennia into eternity. It would probably be doing data migrations. I suppose they are not all that dissimilar from normal software migrations, but there are a few things that make data migrations a little more horrible and soul-sucking. Data migrations are able to slow teams down to a crawl, take at least twice as long as planned, and be way more difficult than imagined.

Can’t it be made easy, shouldn’t Data Migrations have been conquered by now? I mean just put together the perfect plan, break up the work, make a bunch of tickets, estimate the work, and the rest falls into place? If only.

Read more
Photo by Francesco Alberti on Unsplash

Nothing captures the imagination and heart like a tale of betrayal and heartbreak, and that is a tale I want to bring to you today. It’s a tale of Databricks Workflows and Jobs, version changes, new features, API’s, and insidious little hidden gems that will make you pull your hair out when you find them. It’s a tale of what not to do, a tale of how to put developer and customer experience first, instead of forcing unwanted solutions down the throats of the little birdies feeding at your nest.

As a Data Engineering simplicity and ease of use is something close to my heart, something that Databricks did well, or maybe I should say used to do well … before recent releases like Jobs 2.1 API. I hope you can hear the bitterness oozing from my words.

Read more

Ok, so I don’t really mean all that. Or do I? I have no idea what the future holds. Sometimes it’s easy to pick out the winners, like Databricks and Snowflake, you can see, feel, and taste the results of those data products, a delicious and delectable bounty to feast upon. Other things are harder to read the tea leaves on. Kinda like Data Mesh … is it a thing, or is it not a thing? It’s hard to decern between charlatans and marketing/sales departments hocking the next Cure All Snake Oil and real life.

What about all this recent humdrum and buzz around Data Contracts? Pushed by some popular Data Engineering faces like Ananth Packkildurai and Chad Sanderson. What is all the hype about Data Contracts, are folks just pushing another tool down our throats? Is there a real issue and problem that can be solved with Data Contracts?

Read more

There are probably few things in life that will strike more fear and tumult in the heart of the Data Engineer than historical loads. You know, on the surface it seems like such an innocent thing. How could it possibly be, just take a bunch of data stored somewhere and shove it into a table. If only. Life never works that way, and neither does the historical load. You would think after decades we all would have figured it out you know. Is it because we don’t do it enough? Maybe it’s like regex, you just figure it out as you go every single time, telling yourself you’ll do it right next time.

Read more
Photo by krakenimages on Unsplash

The intersection of Big Data and Not Big Data.

An interesting topic of late that has been rattling around in my overcrowded head is the idea of Big Data vs Not Big Data, and the intersection thereof. I’ve been thinking about SAAS vendors, the Modern Data Stack, costs, and innovation. A great real-life example of all these topics is Delta Lake. Delta Lake is the child of Databricks, officially or not, and at a minimum has exploded in usage because of the increasing usage of Databricks and the popularity of Data Lakes.

Delta Lake, Hudi, Iceberg, all these ACID/CRUD abstractions on top of storage for Big Data have been game changers. But, as with any new popular tech, it comes with its own set of challenges. Specifically for Delta Lake … if you want to use it 99.9% of people are going to have to use Spark to do so, which can be costly, in terms of running clusters, and add complexity, in terms of new tooling, data pipelines, and the like. Anytime you only have one path to take with a tool, innovation is stifled, and barriers arise. Enter delta-rs the Standalone Rust API for Delta.

Read more
Photo by Aziz Acharki on Unsplash

Do this, not that. Well, I’ve got my own list. With everyone jumping on the PySpark / Databricks / EMR / Glue / Whatever bandwagon I thought it was long overdue for a post on what to do, and not to do when working with Spark / PySpark. I take the pragmatic approach to working with Spark, it’s honestly very forgiving well and far into the 10s of TBs of data. Once you wander past that point things tend to get a little spicy if you don’t have it all dialed in. As with most things in life if you get a few things right, and of course don’t do some things, that will get you a long way, the same applies to Spark.

Read more
Photo by Mitchel Boot on Unsplash

Sometimes I feel like I’ve been doing this too long, life gets busy, and I don’t have much to say … but here I am 5 years later. I’m still making people mad and making a fool of myself, some things never change. This will probably be short and sweet. I will cover the top 10 most popular blog posts from those 5 years, what the traffic has looked like over time, and what I’ve learned from writing blogs for so long, the good, the bad, and the ugly.

Read more
Photo by Josh Rakower on Unsplash

So, you’ve heard about dbt have you. I honestly can’t decide if it’s here to stay or not, probably is, enough folks are using it, and preaching about it. I personally have always been a little skeptical of dbt, not because it can’t do what it says it can do, it can, but because I’m old and bitter from my many years of Data Engineering, and I always see the problems in things.

But, I will let you judge that for yourself. Today I want to give a brief overview of dbt, kick the tires, muse about its features, and most importantly, look at dbt from a Data Engineering perspective, ferret out the good, the bad, and the ugly. I will try my best to be nice but don’t count on it. Code is on GitHub.

Read more
Photo by George Pagan III on Unsplash

When I think back many moons ago, to when I started in Data Engineering world … even though it went by many different names back in the olden days … I didn’t know what I didn’t know. All those years ago Kimball’s Data Warehouse Toolkit was probably the only resource really available at the time that touched on the general concepts that most “Data Engineers” at the time were working on. The field has come a long way since those days and changed for the better, it’s less often you see classic Data Warehouses running on legacy SQL Servers, with stored procedures with hundreds and thousands of lines of SQL code.

That had me thinking about designing data load patterns in the Modern Data Stack. I want to talk about general data loading patterns, how to design your data pipelines, at a high level, and the basic principles and practices that apply to 99% of all the transformations and data loads done by most Data Engineers.

Read more