Real talk. Polars is all the rage. People love Spark. People use Spark for small data, but data is too big for Pandas. Spark runs on a local machine. Polars runs on a local machine. What do I choose, Spark or Polars? Does it matter?

I’ve written about Polars at different points, here, and here when discussing wider topics. I mean honestly, I think Polars is the best tool to come out in the last 5 years of Data Engineering. But I find it unwaveringly boring. Which is why it’s so popular.

It’s boring for anyone who has used Pandas, Spark, or other Dataframe tools a lot. Sure, it can be a cool breeze in the face of some poor sap who’s been chained down to Pandas by some boss hanging around from a bygone era. You know what I’m talking about.

But honestly, overall, if you’re just an average engineering piddling around with datasets on your machine, what should you choose? Spark or Polars. Let’s talk some real talk.

Read more

Are lambdas one of those tools that everyone uses and no one talks about? I guess I’ve taken them for granted over the years, even though they are incredibly useful. For a lot of my Data Engineering career I didn’t really think about or use AWS lambdas, I just saw them as little annoying flies on the wall, incapable of “real” use in Data Engineering pipelines.

But, I’ve changed my evil ways, and come to love the little buggers. Easy to use, cheap, and no infrastructure to worry about, I mean, they are little jewels in the rough.

I guess now that I look back and reflect, I’m surprised that I don’t see more content produced singing the praises and glories of AWS lambdas, why is the world silent? Those workhorses chug along in the background, millions and millions of times every second.

Today will not be earth-shattering, just a 10,000-foot view of AWS lambdas to inspire you to use them. With a focus on their use in Data Engineering.

Read more