Photo by krakenimages on Unsplash

The intersection of Big Data and Not Big Data.

An interesting topic of late that has been rattling around in my overcrowded head is the idea of Big Data vs Not Big Data, and the intersection thereof. I’ve been thinking about SAAS vendors, the Modern Data Stack, costs, and innovation. A great real-life example of all these topics is Delta Lake. Delta Lake is the child of Databricks, officially or not, and at a minimum has exploded in usage because of the increasing usage of Databricks and the popularity of Data Lakes.

Delta Lake, Hudi, Iceberg, all these ACID/CRUD abstractions on top of storage for Big Data have been game changers. But, as with any new popular tech, it comes with its own set of challenges. Specifically for Delta Lake … if you want to use it 99.9% of people are going to have to use Spark to do so, which can be costly, in terms of running clusters, and add complexity, in terms of new tooling, data pipelines, and the like. Anytime you only have one path to take with a tool, innovation is stifled, and barriers arise. Enter delta-rs the Standalone Rust API for Delta.

Read more
Photo by Aziz Acharki on Unsplash

Do this, not that. Well, I’ve got my own list. With everyone jumping on the PySpark / Databricks / EMR / Glue / Whatever bandwagon I thought it was long overdue for a post on what to do, and not to do when working with Spark / PySpark. I take the pragmatic approach to working with Spark, it’s honestly very forgiving well and far into the 10s of TBs of data. Once you wander past that point things tend to get a little spicy if you don’t have it all dialed in. As with most things in life if you get a few things right, and of course don’t do some things, that will get you a long way, the same applies to Spark.

Read more
Photo by Mitchel Boot on Unsplash

Sometimes I feel like I’ve been doing this too long, life gets busy, and I don’t have much to say … but here I am 5 years later. I’m still making people mad and making a fool of myself, some things never change. This will probably be short and sweet. I will cover the top 10 most popular blog posts from those 5 years, what the traffic has looked like over time, and what I’ve learned from writing blogs for so long, the good, the bad, and the ugly.

Read more
Photo by Josh Rakower on Unsplash

So, you’ve heard about dbt have you. I honestly can’t decide if it’s here to stay or not, probably is, enough folks are using it, and preaching about it. I personally have always been a little skeptical of dbt, not because it can’t do what it says it can do, it can, but because I’m old and bitter from my many years of Data Engineering, and I always see the problems in things.

But, I will let you judge that for yourself. Today I want to give a brief overview of dbt, kick the tires, muse about its features, and most importantly, look at dbt from a Data Engineering perspective, ferret out the good, the bad, and the ugly. I will try my best to be nice but don’t count on it. Code is on GitHub.

Read more