In the beginning, I always thought the humdrum Big O Notation discussions should be reserved for Software Engineers who enjoyed working on such things. I mean, what could it possibly have to do with Data Engineering? I mean, if you are the person writing the Spark application, by all means, have at it, but if you are the Data Engineer who is simply using Spark, why can’t you just leave the details to the Devil? Seems to make sense.
The only problem with that logic is the longer you work as a Data Engineer, probably the harder the problems you work on become, you write more and more code, and basically end up being a specialized Software Engineer … even if you don’t want to be. In the end, to be a good Data Engineer you should at least attempt to understand the concepts behind Big O Notation, and how those concepts can apply to you as Data Engineer, especially for the ETL that most of us write.
Read more